

DAV NANDRAJ PUBLIC SCHOOL

BARIATU, RANCHI

FREQUENTLY ASK QUESTIONS IN BOARD EXAMINATION (XII)

SUBJECT: Mathematics

CHAPTER NAME:

1. Find:
$$\int \frac{dx}{\sqrt{5-4x-2x^2}}$$

$$2. \int_0^1 \sin^{-1}(\frac{2x}{1+x^2}) \, \mathrm{d}x$$

- 3. Using the properties of definite integrals, Solve $\int_0^{\frac{\pi}{4}} log(1 + tanx) dx$
- 4. Evaluate: $\int (\sqrt{tanx} + \sqrt{cotx}) dx$
- 5. Find the particular solution of the differential equation $\log x \left(\frac{dy}{dx}\right) = 3x + 4y$, given that y=0 when x=0
- 6. (a) Write the sum of the order and degree of the differential equation:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right)^3 = 0$$

(b) Find the order and degree of the differential equation:

$$x^{2} \frac{d^{2}y}{dx^{2}} = \left\{1 + \left(\frac{dy}{dx}\right)^{2}\right\}^{4}$$
 GYAN PRACHAR SAN

7. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

8. Find:
$$\int \left(\frac{\sin^6 x}{\cos^2 x} + \frac{\sqrt{\tan x}}{\sin x \cos x}\right) dx$$

- 9. Using integration find the area of region bounded by the triangle whose vertices are (1,0), (2,2) and (3,1).
- 10. Sketch the region bounded by the lines 2x+y=8, y=2, y=4 and the y-axis. Hence its area using integration.
- 11. Find the area of the region bounded by the curve $y=x^2$, the X-axis and the ordinates x=-2 and x=1.

13. Find the area of the region bounded by the curve y=3x+2, the X-axis and the ordinates x=-1 and x=1.

14. Find the particular solution of the differential equation $e^x \sqrt{1 - y^2} dx + \frac{y}{x} dy = 0$, given that y=1 when x=0.

15. Find the general solution of the differential equation $x \log x - \frac{dy}{dx} + y = \frac{2}{x} \log x$
